

Conference: 7th INTERNATIONAL CONGRESS Crowdsourcing Scientific-Technological and Innovative

RENIECYT Registro Nacional de Instituciones y Empresas Científicas y Tecnológicas 2015-20795 CONACYT

Booklets

RENIECYT - LATINDEX - Research Gate - DULCINEA - CLASE - Sudoc - HISPANA - SHERPA UNIVERSIA - E-Revistas - Google Scholar DOI - REBID - Mendeley - DIALNET - ROAD - ORCID

Title: Determination of the water irrigation quality on the heavy metals concentration in agricultural soil and maize cultivated in the Valle del Mezquital, Hidalgo, Mexico

Author: Edgar VÁZQUEZ-NÚÑEZ, Mario HERRERA-TELLEZ

BCIE Control Number: 2016-01 **BCIE Classification (2016):** 221116-0101

Pages: 18

RNA: 03-2010-032610115700-14

ECORFAN-México, S.C.

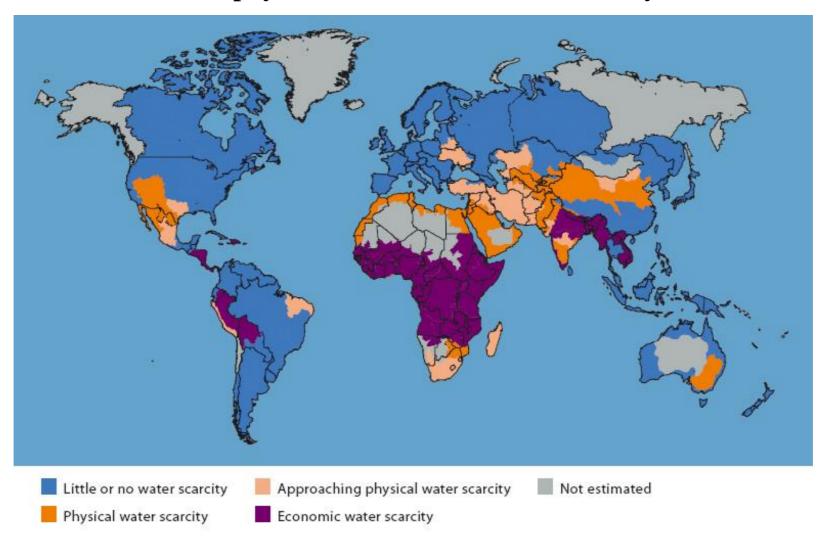
244 – 2 Itzopan Street La Florida, Ecatepec Municipality Mexico State, 55120 Zipcode Phone: +52 I 55 6159 2296 Skype: ecorfan-mexico.s.c. E-mail: contacto@ecorfan.org Facebook: ECORFAN-México S. C. Twitter: @EcorfanC

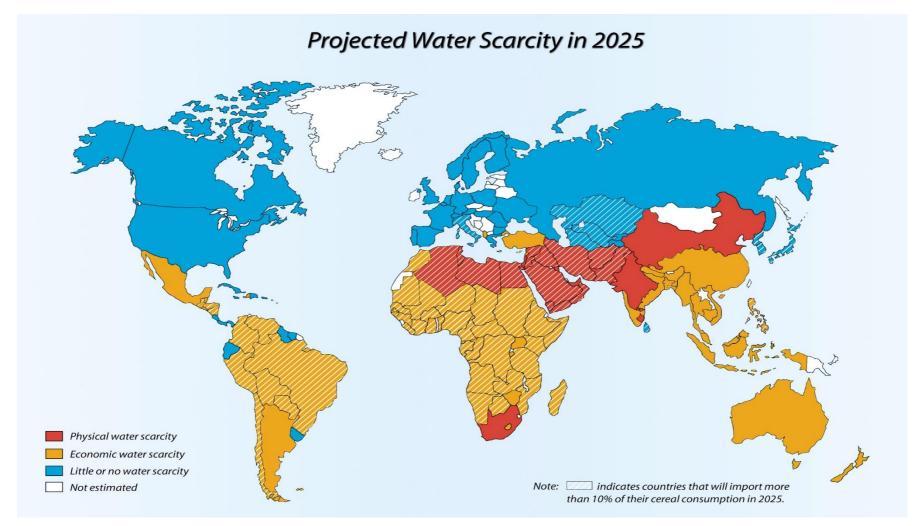
www.ecorfan.org

	Hol	aings	
Bolivia	Hondurz	China	Nicaragua
Cameroon	Guatemala	France	Republic of the Congo
El Salvador	Colombia	Ecuador	Dominic
Peru	Spain	Cuba	Haití
Argentina	Paraguay	Costa Rica	Venezuela
Czech Republic			

Content

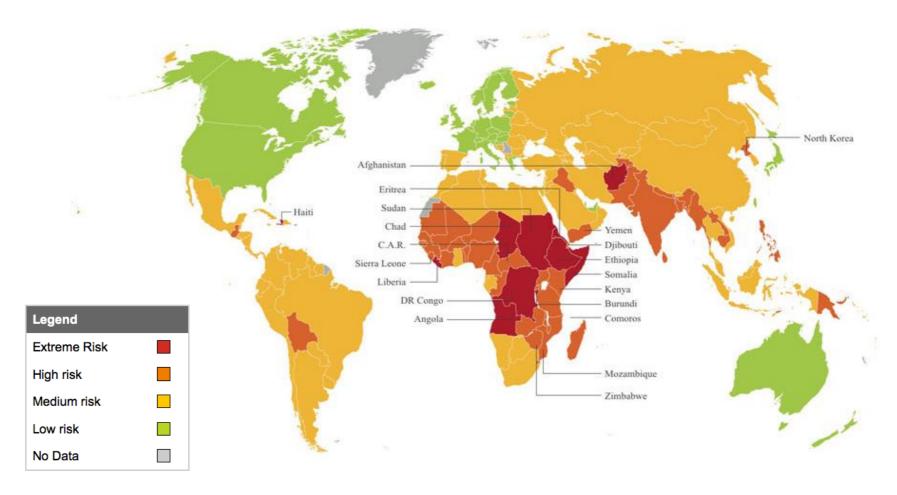
Introduction


Methodology


Results

Conclusions

References


Areas of physical and economic water scarcity

Food security risk Index - 2011

Maplecroft, 2011; Bernahuer 2012

Factors Influencing Water Scarcity

- Hydrologic Cycle
- Population Growth
- Poverty
- Use Patterns
- Contamination

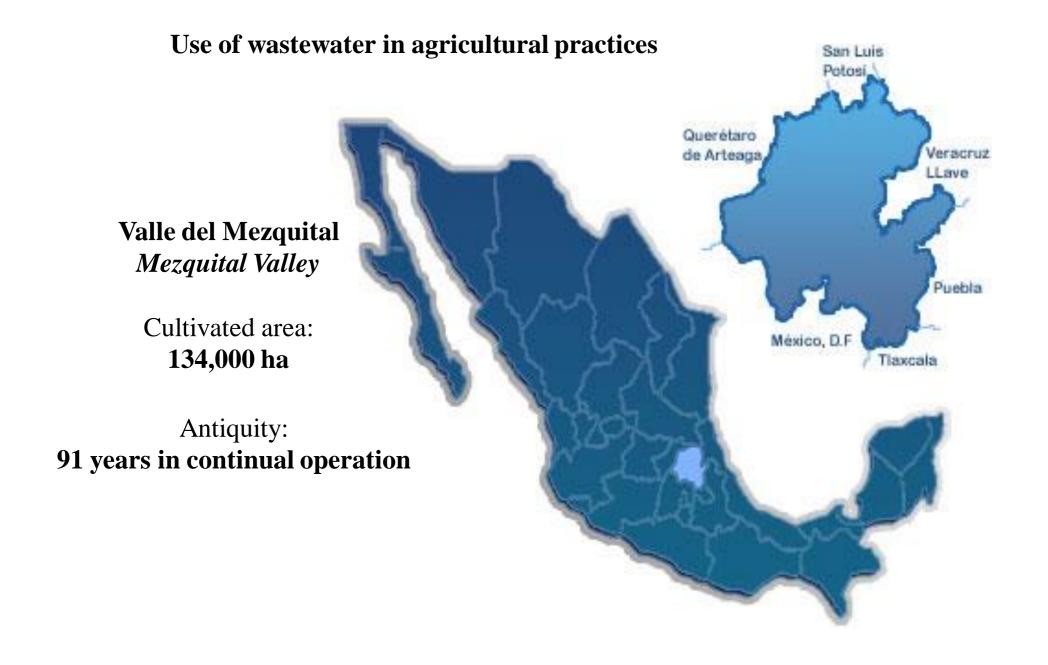
MEXICO FAST FACTS

Area Total: 1,964,375 sq.km

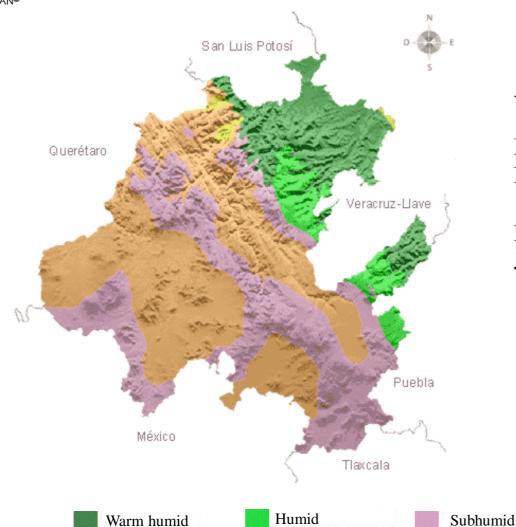
Climate From tropical to desert

Natural Petroleum, silver, copper, Resources gold, lead zinc, natural

gas and timber


Land use Arable land 12.98%;

permanent crops 1.36%,


other 85.66% (2011)

Population 116,220,947 (Jul 2013)

- Sugar Cane
- Corn
- Sorghum
- Wheat
- Bean (1.04 billion of tons)

Average temperature: 16 °C.

Minimun: 4°C – January

Maximun: 27 °C – April and May

Raining season:

June to September 800 mm per year

Dry

Irrigation data for the Mezquital Valley

Irrigation Systems	s Area (ha) covered *	Cultivated *	Wa	ater Volume (10 ⁶ m ³ a ⁻¹)
District 03 (Tula) District 100 (Alfajayucan) Private units	45,214 32,118 5,375	55, 22,380 5,450	258 4,000	1,1 651	148
TOTAL	82,707		83,088		5,799

^{*} Covered area refers to irrigable land with irrigation infrastructure

^{*} Cultivated area includes some areas with more than one crop per year

Yield * increase due to wastewater, Mezquital Valley

Crop	Untreated water		Natural wate	r % of Increase
Maize	5	2	150	
Barley	4	2	100	
Tomato	35	18	194	
Oats	22	12	83	
Chili	12	7	71	
Alfalfa	20	7	271	
Wheat	3	2	50	

^{*} Yield in Ton ha -1

Sewage Treatment Plant Atotonilco, Hidalgo

Plant area 160 ha

Duty 36 m³/seg

Irrigated area 88,000 ha

Sludge generated 643 ton/ day

Question...

What is the effect of wastewater treated on the metals concentration in soil and maize (*Zea mays*) cultivated in an agricultural soil of the Valle del Mezquital?

The aim of this study was to evaluate the effect on the wastewater treatment used for watering maize cultivars on the metals concentration in soil and plant. Cultivars irrigated with non polluted water was used as control

Results

Physical and chemical values for the analyzed soils

Site	EC ^a (ds m ⁻¹)	pН	WHC ^b (g kg ⁻¹ soil)	Carbon (mg kg-1 soil)		Total N (mg kg-1 soil)	Particle size distribution (%)		Textural classification	
				Organic Inorganic		-	Clay	Silt	Sand	-
S1	2.3	7.9	900	23481	1435	2658	350	280	370	Clay loam
S2	2.6	7.5	680	19542	1682	1689	340	290	370	Clay loam
S3	2.1	7.0	735	16580	650	890	300	250	450	Clay loam

S1: soil irrigated with no treated wastewater

S2: soil irrigated with anaerobically wastewater treated

S3: soil irrigated with rainwater ^a EC: electrolytic conductivity ^b WHC: water holding capacity

Physical and chemical values for water samples

Water	ECa (µmhos cm-1)	pН	TSSb	VSS°	FSSd	TDS°	Turbidity (NTU)	COD ^f (mg L ⁻¹)	Total N (mg L-1)	Total P (mg L-1)
(mg L^{-1})										
NTR-W	0.93	7.4	190	128	62	0.53	265	348	36.5	9.5
ADG-W	0.69	7.6	36	24	12	0.47	48	150	17.8	6.5
CTR-W	-	6.4	-	-	-		-	-	-	-

NTR-W: no treated wastewater

ADG-W: anaerobically digested water

CTR-W: rainwater

^aCE: electrolytic conductivity

b TSS: total solved solids

° VSS: volatile suspended solids

d FSS: fixed suspended solids

° COD: chemical oxygen demand

Determined values for soil, maize and water samples

Sample	В	K	Cr	Cd	Cu	Fe	Mn	Ni	Zn	Pb	
	$mg kg^{-1}ds^*$										
S1	139.4	125.1	45.6	2.5	17.3	20159.5	451.7	23.4	61.7	7.5	
S2	126.2	158.3	32.5	1.9	9.8	14769.4	326.8	12.3	38.2	4.2	
S3	354.5	251.7	ND	ND	2.7	19860.2	344.4	16.3	40.2	ND	
		mg kg⁻¹db**									
Mz-S1	4.2	35.2	5.2	2.1	7.2	72.3	134.0	3.2	45.2	ND	
Mz-S2	3.8	43.7	8.0	ND	4.3	89.4	82.6	7.7	87.6	ND	
Mz-S3	3.5	39.8	ND	ND	6.7	82.1	79.5	7.0	35.1	ND	
					mg	L-1					
NTR-W	0.52		0.022	0.0034	0.014	1.5	.05	.21	.64	0.32	
ADG-W	0.32		0.025	0.0042	0.004	0.65	0.10	0.003	0.113	0.12	
CTR-W	1.2	15	ND	ND	ND	4.0	21	ND	ND	ND	

M2-S1: maize irrigated with non treated wastewater

Mz-S2: maize irrigated with anaerobically digested wastewater

Mz-S3: maize irrigated with unpolluted water

*ds: dry soil

"db: dry biomass

Conclusion

The irrigation with wastewater of agricultural soils in the Valle del provides high amounts of organic matter (C and N), showing positive effects in terms of high crop yields and reducing costs by eliminating the use of fertilizers, however at long term it could bring negative effects by increasing salinity and compaction in soils.

the concentration of heavy metals in the irrigation water did not exceed the limits according to the Mexican environmental standards; however, the application for long time could increase the concentration in the soils, affecting the future of crop production.

References

Bernauer, T., & Siegfried, T. (2012). Climate change and international water conflict in Central Asia. *Journal of Peace Research*, 49(1), 227-239.

Cortés, F. A., Guillén, R. C., Navarro, P. S., & Smedley, P. L. (2014). Una revisión de la presencia de arsénico en el agua subterránea en México.

Cosgrove, W. J., & Rijsberman, F. R. (2014). World water vision: making water everybody's business. Routledge.

SIAP, 2016 [online] México. [accessed: 15 de mayo de 2016] Base de datos con información sobre productividad agrícola en México, available at: http://www.siap.gob.mx/

Acknowledgements

E. V-N thank to the B.V for patient assistance and entire collaboration, and to the Universidad de Guanajuato for the institutional support. The research was funded by CONACYT scholarship

University of Guanajuato

© ECORFAN-Mexico, S.C.

No part of this document covered by the Federal Copyright Law may be reproduced, transmitted or used in any form or medium, whether graphic, electronic or mechanical, including but not limited to the following: Citations in articles and comments Bibliographical, compilation of radio or electronic journalistic data. For the effects of articles 13, 162,163 fraction I, 164 fraction I, 168, 169,209 fraction III and other relative of the Federal Law of Copyright. Violations: Be forced to prosecute under Mexican copyright law. The use of general descriptive names, registered names, trademarks, in this publication do not imply, uniformly in the absence of a specific statement, that such names are exempt from the relevant protector in laws and regulations of Mexico and therefore free for General use of the international scientific community. BCIE is part of the media of ECORFAN-Mexico, S.C., E: 94-443.F: 008- (www.ecorfan.org/ booklets)